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MAXIMIZING VISIBILITY IN NONCONVEX POLYGONS:

NONSMOOTH ANALYSIS AND GRADIENT ALGORITHM DESIGN∗

ANURAG GANGULI†, JORGE CORTÉS‡ AND FRANCESCO BULLO§

Abstract. This paper presents a motion control algorithm for a planar mobile observer such as,
e.g., a mobile robot equipped with an omni-directional camera. We propose a nonsmooth gradient
algorithm for the problem of maximizing the area of the region visible to the observer in a simple
nonconvex polygon. First, we show that the visible area is almost everywhere a locally Lipschitz
function of the observer location. Second, we provide a novel version of LaSalle Invariance Principle
for discontinuous vector fields and Lyapunov functions with a finite number of discontinuities. Finally,
we establish the asymptotic convergence properties of the nonsmooth gradient algorithm and we
illustrate numerically its performance.

1. Introduction. Consider a single-point mobile robot in a planar nonconvex
environment modeled as a simple polygon: how should the robot move in order to
monotonically increase the area of its visible region (i.e., the region within its line of
sight)? This problem is the subject of this paper, together with the following modeling
assumptions. The dynamical model for the robot’s motion is a first order system of
the form ṗ = u, where p refers to the position of the robot in the environment and u is
the driving input. The robot is equipped with an omni-directional camera and range
sensor; the range of the sensor is larger than the diameter of the environment. The
robot does not know the entire environment and its position in it, and its instantaneous
motion depends only on what is within line of sight (this assumption restricts our
attention to memoryless feedback laws).

In broad terms, this problem is related to numerous optimal sensor location and
motion planning problems in the computational geometry, geometric optimization,
and robotics literature. In computational geometry [6], the classical Art Gallery
Problem amounts to finding the optimum number of guards in a nonconvex environ-
ment so that each point of the environment is visible by at least one guard. A heuristic
for this problem is to use a greedy approach wherein the first robot (guard) is placed
at the point where it sees the maximum area. The next robot is placed where it sees
the maximum area not visible to the first and so on. In robotics, this approach is
useful for 2D map building wherein a robot moves in such a way so that its next
position is the best in terms of what it can see additionally. In this robotic context,
these problems are referred to as Next Best View problems. The specific problem of
interest in this paper is that of optimally locating a guard in a simple polygon. To
the best of our knowledge, this problem is still open and is the subject of ongoing
research; see [11, 16, 3], and the surveys on geometric optimization and art gallery
problems [1, 14]. However, randomized algorithms for finding the optimal location up
to a constant factor approximation exist; see [3]. These algorithms can be regarded as
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open-loop algorithms that require knowledge of the environment. Closed-loop heuris-
tic algorithms for the Next Best View problem are proposed and simulated in [9] and
in the early work [12]. This problem also derives its motivation from the behavior
of certain territorial animals. A particularly relevant reference is the study of effect
of visibility on space use by red-capped cardinals [7]. These are birds that defend
territories along shorelines of rivers and lakes and tend to spend the majority of their
time near peninsulas (areas that offer greater amount of visibility of their respective
territories) rather than bays.

A second set of relevant references are those on nonsmooth stability analysis. In-
deed, our approach to maximizing visible area is to design a nonsmooth gradient flow.
To define our proposed algorithm we rely on the notions of generalized gradient [4] and
of Filippov solutions for differential inclusions [8]. To study our proposed algorithm
we extend recent results on the stability and convergence properties of nonsmooth
dynamical systems, as presented in [15, 2].

The contributions of this paper are threefold. First, we prove some basic proper-
ties of the area visible from a point observer in a nonconvex polygon Q, see Figure 1.1.
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Fig. 1.1. The visible area function over a nonconvex polygon.

Namely, we show that the area of the visibility polygon, as a function of the
observer position, is a locally Lipschitz function almost everywhere, and that the
finite point set of discontinuities consists of the reflex vertices of the polygon Q.
Additionally, we compute the generalized gradient of the function and show that it is,
in general not regular. Second, we provide a generalized version of the certain stability
theorems for discontinuous vector fields available in the literature [15, 2]. Specifically,
we provide a generalized nonsmooth LaSalle Invariance Principle for discontinuous
vector fields, Filippov solutions, and Lyapunov functions that are locally Lipschitz
almost everywhere (except for a finite set of discontinuities). Third and last, we
use these novel results to design a nonsmooth gradient algorithm that monotonically
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increases the area visible to a point observer. To the best of our knowledge, this is
the first provably correct algorithm for this version of the Next Best View problem.
We illustrate the performance of our algorithm via simulations for some interesting
polygons.

The paper is organized as follows. Section 2 contains the analysis of the smooth-
ness and of the generalized gradient of the function of interest. Section 3 contains
the novel results on nonsmooth stability analysis. Section 4 presents the nonsmooth
gradient algorithm and the properties of the resulting closed-loop system. Finally,
the simulations in Section 5 illustrate the convergence properties of the algorithm.

2. The area visible from an observer. In this section we study the area
of the region visible to a point observer equipped with an omnidirectional camera.
We show that the visible area, as a function of the location of the observer, is locally
Lipschitz, except at a finite point set. We prove that, for general nonconvex polygons,
the function is not regular. We also provide expressions for the generalized gradient
of the visible area function wherever it is locally Lipschitz. We refer the reader to
Appendix A for the notion of locally Lipschitz functions and related concepts.

Let us start by introducing the set of lines on the plane R2. For (a, b, c) ∈
R3 \

{
(0, 0, c) ∈ R3 | c ∈ R

}
, define the equivalence class [(a, b, c)] by

[(a, b, c)] =
{
(a′, b′, c′) ∈ R3 | (a, b, c) = λ(a′, b′, c′), λ ∈ R

}
.

The set of lines on R2 is defined as

L =
{
[(a, b, c)] ⊂ R3 | (a, b, c) ∈ R3, a2 + b2 6= 0

}
.

It is possible to show that L is a 2-dimensional manifold, sometimes referred to as the
affine Grassmannian of lines in R2; see [10].

Next, two simple and useful functions are introduced. Let fpl : R2 × R2 \{
(p, p) ∈ R2 × R2 | p ∈ R2

}
→ L map two distinct points in R2 to the line passing

through them. For (x1, y1), (x2, y2) ∈ R2, the function fpl admits the expression

fpl ((x1, y1), (x2, y2)) = [(y2 − y1, x1 − x2, y1x2 − x1y2)].

If l1 ‖ l2 denotes that the two lines l1, l2 ∈ L are parallel, let flp : L2 \ {(l1, l2) ∈
L2 | l1 ‖ l2} → R2 map two lines that are not parallel to their unique intersection
point. Given two lines [(a1, b1, c1)] and [(a2, b2, c2)] that are not parallel, the function
flp admits the expression

flp ([(a1, b1, c1)], [(a2, b2, c2)]) =

(
b2c1 − b1c2

a2b1 − a1b2
,
a1c2 − a2c1

a2b1 − a1b2

)
.

Note that the functions fpl and flp are class Cω, i.e., they are analytic over their
domains.

Now, let us turn our attention to the polygonal environment. Let Q be a simple
polygon, possibly nonconvex. A polygon is said to be simple if the only points in
the plane belonging to two polygon edges are the polygon vertices. Such a polygon
has a well defined interior and exterior. Note that a simple polygon can contain
holes. Let Q̊ and ∂Q denote the interior and the boundary of Q, respectively. Let
Ve(Q) = (v1, . . . , vn) be the list of vertices of Q ordered counterclockwise. The interior
angle of a vertex v of Q is the angle formed inside Q by the two edges of the boundary
of Q incident at v. The point v ∈ Ve(Q) is a reflex vertex if its interior angle is strictly
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greater than π. Let Ver(Q) be the list of reflex vertices of Q. If S is a finite set, then
let |S| denote its cardinality.

A point q ∈ Q is visible from p ∈ Q if the segment between q and p is contained in
Q. The visibility polygon S(p) ⊂ Q from a point p ∈ Q is the set of points in Q visible
from p. It is convenient to think of p 7→ S(p) as a map from Q to the set of polygons
contained in Q. It must be noted that the visibility polygon is not necessarily a simple
polygon.

Definition 2.1. Let v be a reflex vertex of Q, and let w ∈ Ve(Q) be visible from
v. The (v, w)-generalized inflection segment I(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1} .

A reflex vertex v of Q is an anchor of p ∈ Q if it is visible from p and if {q ∈ S(v) | q =
λv + (1 − λ)p, λ > 1} is not empty.

In other words, a reflex vertex is an anchor of p if it occludes a portion of the
environment from p. Figure 2.1 illustrates the various quantities defined above. Given
a point q and a line l, let dist(q, l) denote the distance between them.

I(v1, w)

p
v1

w

va

v2

Fig. 2.1. Reflex vertices v1 and v2, a generalized inflection segment I(v1, w), an anchor va of
p and the visibility polygon (shaded region) from p. Note that the polygonal environment has a hole.

Theorem 2.2. Let {Iα}α∈A be the set of generalized inflection segments of Q, and
let P be a connected component of Q\⋃α∈A Iα For all p ∈ P , the visibility polygon S(p)
is simple and has a constant number of vertices, say Ve(S(p)) = {u1(p), . . . , uk(p)}.
For all i ∈ {1, . . . , k}, the map P 3 p 7→ ui(p) is Cω and

dui(p) =





0, ui(p) ∈ Ve(Q),

dist(va, l)

(dist(p, l) − dist(va, l))2
√

a2 + b2

[
−b

a

][
y − ya

xa − x

]T

, ui(p) = flp(fpl(va, p), l),

where va = (xa, ya) is an anchor of p and where l = [(a, b, c)] is a line defined by an
edge of Q.

Proof. The first part of the proof is by contradiction. Let |Ve(S(p′))| > |Ve(S(p))|
for some point p′ ∈ P . This means that at least one additional vertex is visible from p′

that was occluded by an anchor of p. Two cases may arise. First, when the additional
vertex belongs to Ve(Q), then by our definition, p and p′ must lie on opposite sides of
a generalized inflection segment. This is a contradiction. Secondly, if the additional
vertex does not belong to Ve(Q), it must be the projection of a reflex vertex (acting
as an anchor). Here again two cases may arise: (1) the reflex vertex is visible from
p, and (2) it is not. The first case is possible only if the reflex vertex is visible but
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does not act as an anchor. So, positive lengths of both sides adjoining the reflex
vertex must also be visible from p and at least one of the sides is completely not
visible from p′ since there is a projection. This means that p and p′ lie on opposite
sides of a generalized inflection segment generated by the reflex vertex and one of its
adjacent vertices. This is a contradiction. The second case is possible if the reflex
vertex in question is occluded by another reflex vertex. But this means that p and p′

lie on opposite sides of the generalized inflection segment from the reflex vertex to the
anchor occluding the reflex vertex; again this is a contradiction. If, on the other hand,
|Ve(S(p′))| < |Ve(S(p))|, then the above arguments hold by interchanging p and p′.
Hence, p and p′ lie on opposite sides of a generalized inflection segment which is a
contradiction. This completes the proof that |Ve(S(p′))| is constant for all p′ ∈ P .

Let p ∈ P . Since the visibility polygon S(p) is star-shaped and since any ray
emanating from p can intersect S(p) at most at two distinct points, then S(p) is
simple. (Indeed, if the ray emanating from p intersects the environment at three or
more points inside S(p), then p must belong to a generalized inflection segment.)

Regarding the second statement, it is clear that if ui(p) is a vertex of Q then it
is independent of p. Instead, if ui(p) /∈ Ve(Q), then

ui(p) = flp(fpl((x, y), (xa, ya)), `)

where p = (x, y), va = (xa, ya) is an anchor of p, and ` is the line, determined by an
edge of Q, that identifies ui. Now, p ∈ P implies p 6= va. It follows that fpl(p, va)
is Cω for all p ∈ P . Also, from the definition of ui(p), it is clear that fpl(p, va) ∦ `.
Therefore, for all p ∈ P , flp(fpl(p, va), `) is Cω; this implies that p 7→ ui(p) is also
Cω. The formula for the derivative can be verified directly.

Next, the area of a visibility polygon as a function of the observer location is stud-
ied, see Figure 1.1. Recall that the area of a simple polygon Q with counterclockwise-
ordered vertices Ve(Q) = ((x1, y1), . . . , (xn, yn)) is given by

A(Q) =
1

2

n∑

i=1

xi(yi−1 − yi+1),

where (x0, y0) = (xn, yn) and (xn+1, yn+1) = (x1, y1). As in the previous theorem, let
{Iα}α∈A be the set of generalized inflection segments of Q and let P be a connected
component of Q \ ⋃

α∈A Iα. Next, if p ∈ P , the visibility polygon from p has a
constant number of vertices, say k = |Ve(S(p))|, is simple, and satisfies A ◦S(p) =∑k

i=1 xi(yi−1 − yi+1) where Ve(S(p)) = (u1, . . . , uk) are ordered counterclockwise,
ui(p) = (xi, yi), u0 = uk, and uk+1 = u1. Therefore, P 3 p 7→ A ◦S(p) is also Cω and

d(A ◦S)(p) =

k∑

i=1

∂A(u1, . . . , uk)

∂ui
dui(p). (2.1)

Remark 2.3. For any ui(p) /∈ Ve(Q), we have

∂(A ◦S)

∂ui
dui(p) =

dist(va, l)

2

dist(ui+1, l) − dist(ui−1, l)

(dist(p, l) − dist(va, l))2

[
y − ya

xa − x

]T

. (2.2)

Note here that ∂(A ◦S)
∂ui

dui(p) is perpendicular to p − va.

To illustrate (2.1) and (2.2), it is convenient to introduce the versor operator
defined by vers(X) = X/‖X‖ if X ∈ R2 \ {0} and by vers(0) = 0. We depict the
normalized gradient vers(d(A ◦S)) of the visible area function in Figure 2.2.
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Fig. 2.2. Normalized gradient of the visible area function over the nonconvex polygon depicted
in Figure 1.1. The dashed lines represent some of the generalized inflection segments.

Theorem 2.4. The map A ◦S restricted to Q \ Ver(Q) is locally Lipschitz.

Proof. By Theorem 2.2, it suffices to consider points lying on generalized inflec-
tion segments. Let p belongs to multiple, say m, generalized inflection segments
{Iα}α∈{1,...,m}. Let B(p, ε) be the open ball of radius ε centered at p; let ε be
small enough such that no generalized inflection segments intersect B(p, ε) other than
{Iα}α∈{1,...,m}. For α ∈ {1, . . . ,m}, let vkα

be the anchor determining the generalized
inflection segment Iα. Without loss of generality, it can be assumed that no anchor
is visible from p other than vk1

, . . . , vkm
. For α ∈ {1, . . . ,m}, lines lα ⊥ fpl(p, vkα

)
can be constructed with the property that lα ∩ Q = ∅ and the vector vkα

− p points
toward lα. Let, hα be the line parallel to lα, tangent to B(ε, p), and intersecting the
segment from p to vkα

. Let p′ and p′′ belong to B(p, ε)∩(Q \ Ver(Q)). Next, let
q′α = flp(fpl(p

′, vkα
), lα) and q′′α = flp(fpl(p

′′, vkα
), lα); see Figure 2.3. Let v′

α and v′′
α

vkα

p

‖vkα
− p‖ − ε

d(vkα
, lα)

v′αv′′α

q′α q′′α lα

hα

p′′

p′

Fig. 2.3. Definition of the lines lα, hα, and the points q′α, q′′α, v′
α, v′′

α.

be the intersections between hα and the lines fpl(p
′, vkα

) and fpl(p
′′, vkα

), respectively.

Now, |A(vkα
, q′α, q′′α)| = 1

2‖q′α − q′′α‖dist(vkα
, lα). But from Figure 2.3, it is easy

to see that ‖q′α − q′′α‖ =
dist(vkα ,lα)
‖vkα−p‖−ε ‖v′

α − v′′
α‖ and that ‖v′

α − v′′
α‖ < ‖p′ − p′′‖. For
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Kα(p) = 1
2

dist(vkα ,lα)2

‖vkα−p‖−ε , the following is true:

|A(S(p′)) − A(S(p′′))| ≤
m∑

α=1

|A(vkα
, q′α, q′′α)|

≤
m∑

α=1

Kα(p)‖p′ − p′′‖.

This fact is illustrated by Figure 2.4. This completes the proof that Q \ Ver(Q) 3

v1

v3

p

p′′

p′

q′′3

q′3

l3
l2

q′2

q′′2

l1q′′1q′1

v2

B(p, ε)

Fig. 2.4. Upper bounds on the change in area. Here m = 3.

p 7→ A ◦S(p) is locally Lipschitz.
To obtain the expression for the generalized gradient of A ◦S, the polygon Q is

partitioned as follows.
Lemma 2.5. Let {Iα}α∈A be the set of generalized inflection segments of Q.

There exists a unique partition {P β}β∈B of Q where Pβ is a connected component of
Q \ ⋃

α∈A Iα and P β denotes its closure.
Figure 2.5 illustrates this partition for the given nonconvex polygon. For β ∈ B,

define Aβ : P β → R+ by

Aβ(p) = A ◦S(p), for p ∈ Pβ ,

and by continuity on the boundary of Pβ . It turns out that the maps Aβ , β ∈ B, are
continuously differentiable∗ on P β . Equation (2.1) gives the value of the gradient for
p ∈ Pβ . However, in general, for p ∈ P β1

⋂
. . .

⋂
P βm

\Ver(Q), based on Theorem 2.4
and Lemma 2.5, we can write

∂(A ◦S)(p) = co
{

dAβ1
(p), . . . ,dAβm

(p)
}

. (2.3)

∗A function is continuously differentiable on a closed set if (1) it is continuously differentiable on
the interior, and (2) the limit of the derivative at a point in the boundary does not depend on the
direction from which the point is approached.
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p

P1

P2

P4

P3

Fig. 2.5. Partition of Q. The generalized gradient of the area function at p is the convex hull
of the gradient of four functions A1, . . . , A4 at p.

This completes our study of the generalized gradient of the locally Lipschitz func-
tion A ◦S. Next, it is shown how this function is not regular in many interesting
situations.

Lemma 2.6. There exists a nonconvex polygon Q such that the maps A ◦S and
−A ◦S restricted to Q \ Ver(Q) are not regular.

Proof. We present an example to justify the above statement. We refer the
reader to Appendix A for the notion of right directional derivative and generalized
directional derivative. In Figure 2.6, ∂(A ◦S)(p′) = co{dA1,dA2} where ‖dA1‖ �
‖dA2‖. Take a vector η′ perpendicular to the generalized inflection segment to which
p′ belongs (see Figure 2.6). It is clear that (A ◦S)′(p; η′) = dA2 · η′. However,
(A ◦S)0(p′; η′) = max{ζ · η′|ζ ∈ ∂(A ◦S)(p′)} = dA1 · η′ > dA2 · η′. Again, in

dA2

η′′

p′

dA1

η′

dA4

dA3

p′′

Fig. 2.6. Example polygon for which A ◦S and −A ◦S restricted to Q \Ver(Q) are not regular.
Note here that dA1 and dA2 are not perfectly aligned with η′. Also, dA3 and dA4 are not perfectly
aligned with η′′.

Figure 2.6, ∂(−A ◦S)(p′′) = co{−dA3,−dA4}, where ‖ − dA4‖ � ‖ − dA3‖. Take a
vector η′′ perpendicular to the generalized inflection segment to which p′′ belongs (see
Figure 2.6). It is clear that −(A ◦S)′(p′′; η′′) = −dA4 ·η′′. However, (A ◦S)0(p′′; η′′) =
max{ζ · η′′|ζ ∈ ∂(A ◦S)(p′′)} = −dA3 · η′′ > −dA4 · η′′.

3. An invariance principle in nonsmooth stability analysis. This section
presents results on stability analysis for discontinuous vector fields via nonsmooth
Lyapunov functions. The results extend the work in [2] and will be useful in the next
control design section, see also [5]. We refer the reader to [8] and to the self-contained
exposition in Appendix A for some useful nonsmooth analysis concepts.
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In what follows we shall study differential equations of the form

ẋ(t) = X(x(t)),

where X is a discontinuous vector field on RN .
To analyze this differential equation we introduce a useful tool. Given a locally

Lipschitz function f : RN → R, the set-valued Lie derivative of f with respect to X
at x is defined as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a , ∀ζ ∈ ∂f(x)} .

For each x ∈ RN , L̃Xf(x) is a closed and bounded interval in R, possibly empty. If

f is continuously differentiable at x, then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in

addition, X is continuous at x, then L̃Xf(x) corresponds to the singleton {LXf(x)},
the usual Lie derivative of f in the direction of X at x.

We are now ready to state the first result in this section.
Lemma 3.1. Let X : RN → RN be measurable and essentially locally bounded

and let f : RN → R be locally Lipschitz. Let γ : [t0, t1] → RN be a Filippov solution
of X such that f(γ(t)) is regular for almost all t ∈ [t0, t1]. Then

(i) d
dt (f(γ(t))) exists for almost all t ∈ [t0, t1], and

(ii) d
dt (f(γ(t))) ∈ L̃Xf(γ(t)) for almost all t ∈ [t0, t1].

Proof. The result is an immediate consequence of Lemma 1 in [2].
The following result is a generalization of the classic LaSalle Invariance Principle

for smooth vector fields and smooth Lyapunov functions to the setting of discontinuous
vector fields and nonsmooth Lyapunov functions.

Theorem 3.2 (LaSalle Invariance Principle). Let X : RN → RN be measurable
and essentially locally bounded and let S ⊂ RN be compact and strongly invariant
for X. Let C ⊂ S consist of a finite number of points and let f : S → R be locally
Lipschitz on S \ C and bounded from below on S. Assume the following properties
hold:

(A1) if x ∈ S \ C, then either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅,
(A2) if x ∈ C and if γ is a Filippov solution of X with γ(0) = x, then limt→0− f(γ(t)) ≥

limt→0+ f(γ(t)), and
(A3) if γ : R+ → S is a Filippov solution of X, then f ◦γ is regular almost every-

where.
Define ZX,f =

{
x ∈ S \ C | 0 ∈ L̃Xf(x)

}
and let M be the largest weakly invariant

set contained in (ZX,f ∪C). Then the following statements hold:
(i) if γ : R+ → S is a Filippov solution of X, then f ◦γ is monotonically nonin-

creasing;
(ii) each Filippov solution of X with initial condition in S approaches M as t →

+∞;
(iii) if M consists of a finite number of points, then each Filippov solution of X

with initial condition in S converges to a point of M as t → +∞.
Proof. Fact (i) is a consequence of Assumptions (A1), (A2) and (A3), and of

Lemma 3.1.
In what follows we shall require the following notion. Given a curve γ : R+ → RN ,

the positive limit set of γ, denoted by Ω(γ), is the set of y ∈ RN for which there
exists a sequence {tk}k∈N ⊂ R such that tk < tk+1, for k ∈ N, limk→+∞ tk = +∞,
and limk→+∞ γ(tk) = y. For x ∈ S, let γ1 be a Filippov solution of X with γ1(0) = x
and let Ω(γ1) be the limit set of γ1. Under this setting, Ω(γ1) is nonempty, bounded,
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connected and weakly invariant, see [8]. Furthermore, Ω(γ1) ⊂ S because S is strongly
invariant and closed.

To prove fact (ii), it suffices to show that Ω(γ1) ⊂ ZX,f ∪C. Trivially, Ω(γ1)∩C ⊂
C. Let y ∈ Ω(γ1)\C so that f is locally Lipschitz at y. There exists a sequence {tk}k∈N

such that limk→+∞ γ1(tk) = y. Because f ◦ γ1 is monotonically nonincreasing and f
is bounded from below, limt→+∞ f(γ1(t)) exists and is equal to, say, a ∈ R. Now,
by continuity of f , a = limk→+∞ f ◦γ1(tk) = f(y). This proves that f(y) = a for
all y ∈ Ω(γ1) \ C. At this point we distinguish two cases. First, assume that y is
an isolated point in Ω(γ1). Then clearly, there exists a Filippov solution of X, say
γ2, such that γ2(t) = y for all t ≥ 0. Hence d

dtf(γ2(t)) = 0, and, by Lemma 3.1,

0 ∈ L̃Xf(γ2(t)) or in other words y ∈ ZX,f . Second, assume that y is not isolated in
Ω(γ1), and let γ2 be a Filippov solution of X with γ2(0) = y. Since f is continuous at
y and Ω(γ1) contains a finite number of points of discontinuity of f , there exists δ > 0
such that f(y′) = a for all y′ ∈ B(y, δ) ∩ Ω(γ1). Therefore, there exists t′ > 0 such
that f(γ2(t)) = a for all t ∈ [0, t′]. Hence, we have d

dtf(γ2(t)) = 0 for all t ∈ [0, t′].

It follows from Lemma 3.1 that for all t ∈ [0, t′], we have 0 ∈ L̃Xf(γ2(t)) or in other
words γ2(t) ∈ ZX,f . By continuity of γ2 at t = 0, we have that γ2(0) = y ∈ ZX,f .
Since Ω(γ1) is weakly invariant, we have Ω(γ1) ⊂ M and hence γ2 approaches M .

We now prove fact (iii). If M consists of a finite number of points, and since
Ω(γ1) ⊂ M is connected, Ω(γ1) is a point. Hence, by the argument in the preceding
paragraph, each Filippov solution of X approaches a point of M . In other words, it
converges to a point of M .

Corollary 3.3. The LaSalle Invariance Principle is valid under the following
relaxed assumption:

(A3) if γ : R+ → S is a Filippov solution of X, then almost everywhere either f ◦γ
or −f ◦γ is regular.

Proof. The proof is a consequence of the fact that d
dt (f(γ(t))) exists and belongs

to L̃Xf(γ(t)) if and only if d
dt (−f(γ(t))) exists and belongs to L̃X(−f)(γ(t)). Thus

result (ii) of Lemma 3.1 still holds and the proof of the LaSalle Invariance Principle
remains unchanged.

4. Maximizing the area visible from a mobile observer. In this section we
build on the analysis results obtained thus far to design an algorithm that maximizes
the area visible to a mobile observer. We aim to reach local maxima of the visible
area A ◦S by designing some appropriate form of a gradient flow for the discontin-
uous function A ◦S. We now present an introductory and incomplete version of the
algorithm: the objective is to steer the mobile observer along a path for which the
visible area is guaranteed to be nondecreasing.

10
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Name: Increase visible area for Q
Goal: Maximize the area visible

to a mobile observer

Assumption: Generalized inflection segments of Q do not intersect.
Initial position does not belong to a generalized inflec-
tion segment.

Let p(t) denote the observer position at time t inside the nonconvex polygon Q. The
observer performs the following tasks at each time instant:

compute visibility polygon S(p(t)) ⊂ Q,

if p(t) does not belong to any generalized inflection segment or to the boundary
of Q then

move along the versor of the gradient d(A ◦S)

else if p(t) belongs to a generalized inflection segment but not to the boundary
of Q then

depending on the generalized gradient ∂(A ◦S), either slide along the segment
or leave the segment in an appropriate direction

else if p(t) belongs to the boundary of Q but not to a reflex vertex, then

depending on the projection of ∂(A ◦S) along the boundary, either slide along
the boundary or move in an appropriate direction toward the interior of Q

else

either follow a direction of ascent of A ◦S or stop
end if

The remainder of this section is dedicated to formalizing this loose description.

4.1. A modified gradient vector field. Before describing the algorithm to
maximize the area visible to the mobile observer, we introduce the following useful
notions. Given a simple polygon Q with Ve(Q) = (v1, . . . , vn) and ε > 0, define the
following quantities:

(i) let the ε-expansion of Q be Qε = {p | ||p − q|| ≤ ε for some q ∈ Q},
(ii) for i ∈ {1, . . . , n}, let P ε

i be the open set delimited by the edge vivi+1, the
bisectors of the external angles at vi and vi+1 and the boundary of Qε,

(iii) for ε small enough and for any point p in Qε, let prjQ(p) be uniquely equal
to arg min{||p′ − p|| | p′ ∈ ∂Q}, and

(iv) for p ∈ ∪i∈{1,...,n} P ε
i , let the outward normal n(prjQ(p)) be the unit vector

directed from prjQ(p) to p.

We illustrate these notions in Figure 4.1. Note that prjQ(p) can never be a reflex
vertex. We can now define a vector field on Qε as follows:

XQ(p) =





vers(d(A ◦S)(p)), if p ∈ Q̊ \ {Iα}α∈A,

−n(prjQ(p)), if p ∈ P ε
i ,

0, otherwise.

(Recall that the versor operator is defined by vers(Y ) = Y/‖Y ‖ if Y ∈ R2 \{0} and by

vers(0) = 0.) Note that XQ is well-defined because at p ∈ Q̊ \ {Iα}α∈A the function
A ◦S is analytic. Clearly, XQ is not continuous on Qε. However, the set of points
where it is discontinuous is of measure zero. Almost everywhere in the interior of
Q, the vector field XQ is equal to the normalized gradient of A ◦S as depicted in
Figure 2.2.

11
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vi+1

vi

n(prjQ(p))

P ε
iprjQ(p)

p

Fig. 4.1. The ε-expansion Qε of the simple polygon Q, an open set P ε
i and the corresponding

outward normal n(prjQ(p)).

Remark 4.1. An important observation in this setting is that at all points p
where A ◦S is locally Lipschitz, we have K[d(A ◦S)](p) = ∂(A ◦S)(p). In such a case
it is also true that for all η ∈ ∂(A ◦S)(p), there exists at least one δ > 0 such that
δη ∈ K[XQ](p) and vice versa.

We now present the differential equation describing the motion of the observer:

ṗ(t) = XQ(p(t)). (4.1)

A Filippov solution of (4.1) on an interval [t0, t1] ⊂ R is defined as a solution of the
differential inclusion

ṗ(t) ∈ K[XQ](p(t)), (4.2)

where K[XQ] is the usual Filippov differential inclusion associated with XQ, see Ap-
pendix A. Since XQ is measurable and bounded, the existence of a Filippov solution
is guaranteed. We study uniqueness and completeness of Filippov solutions in the
following lemma.

Lemma 4.2. The following statements hold true:
(i) there exists a simple polygon Q for which the corresponding vector field XQ

admits multiple Filippov solutions;
(ii) any simple polygon Q is a strongly invariant set for the corresponding vector

field XQ and, therefore, any Filippov solution is defined over R+.
Proof. We present an example to justify the statement (i). In Figure 4.2, at the

point p0 on the generalized inflection segment, both directions η1 and η2 belong to
∂(A ◦S)(p0). Three distinct Filippov solutions of equation (4.1) exist. Two of the
solutions start from p0 along the two directions η1 and η2 while the third solution is
p(t) = p0 for all t ≥ 0. Statement (ii) is a consequence of the definition of XQ on P ε

i

η1
p0
η2

Fig. 4.2. Three Filippov solutions exist starting from the point p0.

for i ∈ {1, . . . , n}.
We now claim that any solution of the differential inclusion (4.2) has the property

that the visible area increases monotonically. To prove these desirable properties, we
first present the following results in nonsmooth analysis.

12
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4.2. Properties of solutions and convergence analysis. To prove the con-
vergence properties of the solution of (4.2) using the results presented in Section 3,
we must first define a suitable Lyapunov function. Intuitively since our objective is
to maximize the visible area, our Lyapunov function should be closely related to it.
For ε > 0, we now define the extended area function Aε

Q at all points p ∈ Q
⋃{∪i P ε

i }.
The extended function coincides with the original function on the interior and on the
boundary of Q and is defined appropriately outside:

Aε
Q(p) =

{
A ◦S(p), if p ∈ Q,

A ◦S(prjQ(p)) − ||p − prjQ(p)||, if p ∈ ∪i P ε
i .

For all p ∈ ∂Q \ Ve Q, Aε
Q satisfies (see Figure 4.3):

Aε
Q
′(p;n(prjQ(p))) = −1.

vi−1

n(prjQ(p2))

p1

p2

p3

n(prjQ(p3))

prjQ(p1)

prjQ(p3)

n(prjQ(p1))

ε
vi+1

vi = prjQ(p2)

Fig. 4.3. Extending the function A ◦S to Aε
Q

. Note the direction of n(prjQ(pi)) at all points pi.

Remark 4.3. The extended area function Aε
Q is locally Lipschitz on (Q \

Ver(Q))
⋃{∪i P ε

i } and analytic almost everywhere on Q
⋃{∪i P ε

i }.
The following theorem is important to prove that such a function leads to a

monotonically nondecreasing value of the area of the visibility polygon.
Theorem 4.4. Let G(Q) be the subset of Q where both maps p 7→ −Aε

Q(p) and

p 7→ Aε
Q(p) are not regular. Then any Filippov solution γ : R+ → Q of XQ has the

property that γ(t) /∈ G(Q) for almost all t ∈ R+ unless γ reaches a critical point of
K[XQ].

Proof. Note that G(Q) is a subset of ∪α∈A Iα. This is a consequence of Theo-
rem 2.2 and the fact that functions are regular at points of differentiability. Given a
generalized inflection segment Iα, let lα be the line extending Iα and let tα be one
of the two unit tangent vectors to Iα. A Filippov solution γ of XQ slides along Iα

starting from p0 ∈ Iα only if ∂Aε
Q(p0) contains either tα or −tα. It then suffices to

show that if ∂Aε
Q(p0) contains tα or −tα, then either Aε

Q or −Aε
Q is regular at p0. Let

us also assume that p0 does not belong to any other generalized inflection segment. If
this were not the case, then either p0 is a critical point or the Filippov solution does
not belong to the point of intersection for almost all t ∈ R+.

Let lα divide R2 into two open half planes H1 and H2. There exists δ > 0 such that
Aε

Q is analytic on Hi ∩B(p0, δ), i ∈ {1, 2}, see Figure 4.4. On lα, we have (Aε
Q)1 =

(Aε
Q)2 where (Aε

Q)i is the function Aε
Q restricted to Hi. Let p′ ∈ B(p0, δ) and, without

13
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p0

p′

dAε
Q2

H2 H1
lα

Aε
Q2

Aε
Q1

tα

n

B(p0, δ)dAε
Q1

Fig. 4.4. The point p0 lies on the generalized inflection segment l. H1 and H2 are half planes
on either side of l. n and t are normal and parallel to l respectively. The other arrows indicate the
directions of dAε

Q(p) on either side of l.

loss of generality, let p′ ∈ H2. Let n be the normal to Iα at p0 pointing away from p′.
Note that in terms of the notation introduced in Section 4.1, n = −n(prjlα(p′)) where
prjlα(p′) = arg min{||p′ − p|| | p ∈ lα}. Now, (Aε

Q)1 can be extended to H2 ∩B(p0, δ)
by analyticity. Likewise, (Aε

Q)2 can be extended to H1 ∩B(p0, δ). Since the functions
(Aε

Q)i, i ∈ {1, 2}, are analytic, they can be written as the expansions of their Taylor
series’:

(Aε
Q)i(p

′) = (Aε
Q)i(p0) + d((Aε

Q)i)(p0) · (p′ − p0) + O(‖p′ − p0‖2).

It follows from the above set of equations that:

(Aε
Q)2(p

′) − (Aε
Q)1(p

′) =
(
d((Aε

Q)2) − d((Aε
Q)1)

)
· (p′ − p0) + O(‖p′ − p0‖2).

Note that n is the same for all p′ ∈ H2. Now, p′ − p0 = −c1n + c2tα such that
c1 ≥ 0. Also, d(Aε

Q)1(p0) · tα = d(Aε
Q)2(p0) · tα since (Aε

Q)1(p) = (Aε
Q)2(p) for p ∈ Iα.

Therefore,

(Aε
Q)2(p

′) − (Aε
Q)1(p

′) = c1

(
d(Aε

Q)1(p0) · n − d(Aε
Q)2(p0) · n

)
+ O(‖p′ − p0‖2).

Now, either tα or −tα belongs to ∂Aε
Q(p0) = co{d(Aε

Q)1,d(Aε
Q)2} if and only if

the product of d(Aε
Q)1(p0) · n and d(Aε

Q)2(p0) · n is less than or equal to zero (see
Figure 4.4). If d(Aε

Q)1(p0) · n = 0 and d(Aε
Q)2(p0) · n = 0, then clearly Aε

Q is

C1 at p0 and hence regular. Otherwise, let us assume, without loss of generality,
that d(Aε

Q)1(p0) · n − d(Aε
Q)2(p0) · n < 0. Therefore, there exists η2 > 0 such

that (Aε
Q)2(p

′) − (Aε
Q)1(p

′) ≤ 0 for p′ ∈ H2 ∩B(p0, η2). Similarly, there exists
η1 > 0 such that for p′ ∈ H1 ∩B(p0, η1), we have (Aε

Q)1(p
′) − (Aε

Q)2(p
′) ≤ 0. Thus,

there exists a neighborhood around p0 where Aε
Q(p) = min{(Aε

Q)1(p), (Aε
Q)2(p)} or

−Aε
Q(p) = max{−(Aε

Q)1(p),−(Aε
Q)2(p)}. Since (Aε

Q)i, i ∈ {1, 2}, are smooth func-
tions, it follows from Proposition 2.3.12 in [4] that −Aε

Q is regular at p0. On the other
hand, if we assume that d(Aε

Q)1(p0) · n − d(Aε
Q)2(p0) · n > 0, then we get that Aε

Q is
regular at p0.

In the following theorem, the functions Aε
Q and −Aε

Q are used as candidate Lya-
punov functions to show the convergence properties of Filippov solutions of XQ.

Theorem 4.5. Any Filippov solution γ : R+ → Q of XQ has the following
properties:

(i) t 7→ A ◦S(γ(t)) is continuous and monotonically nondecreasing,
(ii) γ approaches the set of critical points of K[XQ].
Proof. Let us start by showing that, if γ is a Filippov solution of XQ, then

A ◦S ◦γ is continuous. The reader is referred to Figure 4.5 for an introduction of
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notations used. Let Xr
Q and Xθ

Q be the components of XQ parallel and perpendic-

ular to p − v respectively. Similarly, let d(A ◦S(p))r and d(A ◦S(p))θ be the com-
ponents of d(A ◦S(p)) parallel and perpendicular to p − v respectively. Note that

if ‖d(A ◦S(p))‖ 6= 0, then ‖Xr
Q‖ = ‖d(A ◦S(p))r‖

(‖d(A ◦S(p))r‖2+‖d(A ◦S(p))θ‖2)1/2 and ‖Xθ
Q‖ =

‖d(A ◦S(p))θ‖
(‖d(A ◦S(p))r‖2+‖d(A ◦S(p))θ‖2)1/2 . Let ε > 0 be such that ‖d(A ◦S(p))‖ 6= 0 for all

p ∈ B(v, ε)∩D. For now, let us also assume that {∪α∈A Iα}∩B(v, ε)∩D = ∅.
We now claim that in B(v, ε)∩D, d(A ◦S(p))θ = Ω(1/‖p − v‖) and d(A ◦S(p))r =

O(1). Notice that d(A ◦S(p)) = d(A ◦S(p))r + d(A ◦S(p))θ =
∑

i
∂(A ◦S)

∂ui
dui(p). Let

u1 = u. From (2.2), it is clear that ∂(A ◦S)
∂u du(p) is perpendicular to p − v and

hence contributes only to d(A ◦S(p))θ. Also ‖∑
i≥2

∂(A ◦S)
∂ui

dui(p)‖ is bounded for all

p ∈ B(v, ε)∩D. Therefore, d(A ◦S(p))θ = ∂(A ◦S)
∂u du(p) + Ω(1) = Ω(‖ ∂(A ◦S)

∂u du(p)‖)
and d(A ◦S(p))r = O(1). Again from (2.2), we have

‖∂(A ◦S)

∂u
du(p)‖ =

dist(v, l)

2

‖p − v‖|dist(u2, l) − dist(un, l)|
(dist(p, l) − dist(v, l))2

.

Now, |dist(p, l) − dist(v, l)| ≤ ‖p − v‖. Therefore,

‖∂(A ◦S)

∂u
du(p)‖ = Ω

( |dist(u2, l) − dist(un, l)|
‖p − v‖

)
.

Since p does not lie on a generalized inflection segment, either un = v or u2 = v.
Without loss of generality, let un = v. Since u belongs to l, clearly u2 must belong to
l. Hence |dist(u2, l)− dist(un, l)| = dist(v, l) and is a constant for all p ∈ B(v, ε)∩D.
Thus

‖∂(A ◦S)

∂u
du(p)‖ = Ω

(
1

‖p − v‖

)
.

Hence, d(A ◦S(p))θ = Ω( 1
‖p−v‖ ). In other words there exist constants kr > 0 and

kθ > 0 such that ‖d(A ◦S(p))r‖ ≤ kr and ‖d(A ◦S(p))θ‖ ≥ kθ

‖p−v‖ . Therefore

‖d(A ◦S(p))θ‖
‖d(A ◦S(p))r‖ ≥ kθ

kr‖p−v‖ . It follows that

‖Xr
Q‖ =

1

(1 + ‖d(A ◦S(p))θ‖2

‖d(A ◦S(p))r‖2 )1/2
≤ 1

(1 +
k2

θ

k2
r‖p−v‖2 )1/2

=
kr‖p − v‖

(k2
θ + k2

r‖p − v‖2)1/2

≤ kr‖p − v‖
kθ

.

Note that a convex combination of finitely many Xr
Q will also admit a similar in-

equality and so the assumption that {∪α∈A Iα}∩B(v, ε)∩D = ∅ is not limiting.
Now let γ(t) be a solution of XQ such that γ(0) = v. Let T be any time such that
‖γ(T ) − v‖ = R and for all t ∈ [0, T ], γ(t) ∈ B(v, ε)∩D and Xr

Q(γ(t)) is directed

away from v. Then clearly, R =
∫ T

0
Xr

Qdt ≤ R kr

kθ
T . In other words the time T taken

for a trajectory to travel any distance R is greater than kθ

kr
. This is a contradiction.

Therefore, our assumption that for all t ∈ [0, T ], γ(t) ∈ B(v, ε)∩D is false. So, the
trajectory must belong to C for some finite time interval contained in [0, T ]. We can
choose R as small as possible and this implies that there exists a finite time interval
[0, TC ] for which γ(t) ∈ C. It follows trivially that t 7→ A ◦S(γ(t)) is right continuous
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at t where γ(t) = v. We can prove similarly that t 7→ A ◦S(γ(t)) is left continuous at
t where γ(t) = v by considering the vector field −XQ in place of XQ. This completes
the proof that t 7→ A ◦S(γ(t)) is continuous.

v

l = [a, b, c]

u

D

p

Xθ
Q

Xr
Q

C

Fig. 4.5. Illustration of various notions used in Theorem 4.5. The dashed lines represent
generalized inflection segments generated by the reflex vertex v and vertices adjacent to it. These
divide the region around v that is inside Q into three subregions C , D and E. u ∈ Ve(S(p)) lies
on the line l. The generalized inflection segments including the vertex v are assumed to belong to
region C. Note that D∩C = ∅.

Next we show that Assumptions (A1), (A2) and (A3) in Theorem 3.2 hold. Let

p ∈ Q \Ver(Q) and take a ∈ L̃XQ
(−Aε

Q)(p). By definition, there exists k ∈ K[XQ](p)
such that a = k · ζ for all ζ ∈ −∂Aε

Q(p). In particular, it is true for ζ = −δk, for

some δ > 0, see Remark 4.1. Therefore, a = −δ‖k‖2 ≤ 0. This proves that either

max L̃XQ
(−Aε

Q)(p) ≤ 0 or L̃XQ
(−Aε

Q)(p) = ∅, i.e., Assumption (A1) is satisfied.
Assumption (A2) is a consequence of the continuity of A ◦S ◦γ. Finally, Assumption
(A3) is a consequence of Theorem 4.4. Applying now Theorem 3.2 and its corollary,
we conclude that fact (i) holds. Moreover, we also deduce that any Filippov solution
of XQ converges to the largest weakly invariant set M contained in ZXQ,−Aε

Q
∪Ver(Q).

To prove fact (ii), let us show that M = {p ∈ Q | 0 ∈ K[XQ](p)}∩(ZXQ,−Aε
Q
∪

Ver(Q)). Based on Theorem 4.4, Theorem 3.2 and Corollary 3.3, it suffices to
show that M is contained in {p ∈ Q | 0 ∈ K[XQ](p)}. Let us note that the set
{p ∈ Q | 0 ∈ K[XQ](p)} is weakly invariant and can be established to be closed fol-
lowing the same reasoning as in Proposition 2.1.1 in [5]. Let x ∈ ZXQ,−Aε

Q
. Then,

0 ∈ L̃XQ
(−Aε

Q)(x), i.e., there exists k ∈ K[XQ](x) such that ζ · k = 0 for all
ζ ∈ −∂Aε

Q(x). But, k ∈ K[XQ](x) implies that there exists δ > 0 such that

δk ∈ −∂Aε
Q(x), see Remark 4.1. Thus, for ζ = δk, we get δ‖k‖2 = 0, that is,

0 ∈ K[XQ](x). This shows that ZXQ,−Aε
Q

⊂ {p ∈ Q | 0 ∈ K[XQ](x)}. Next, let

x ∈ Ver(Q)∩M . If the set {x} is weakly invariant, then by definition 0 ∈ K[XQ](x).
If on the other hand x is not isolated in M , then there exists a sequence of points
{xm}m∈N converging to x such that xm ∈ ZXQ,−Aε

Q
or, alternatively, 0 ∈ K[XQ](xm).

Because {p ∈ Q | 0 ∈ K[XQ](p)} is closed, it follows that 0 ∈ K[XQ](x). Thus we
proved that any weakly invariant set contained in ZXQ,−Aε

Q
∪ Ver(Q) is a subset of

{p ∈ Q | 0 ∈ K[XQ](p)}. Again, as in Proposition 2.1.1 in [5], it can be shown that
ZXQ,−Aε

Q
is a closed set and hence the claim that M ⊂ {p ∈ Q | 0 ∈ K[XQ](p)} fol-

lows.

Theorem 4.5 implies that the single observer converges to a critical point of A ◦S
or to a reflex vertex of Q. However, as shown in Figure 5.2, the presence of noise or
computational inaccuracies actually works to drive the observer away from a reflex
vertex that is not a local maximum. This will also be true for other critical points
that are not local maxima.
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5. Simulation results. To conduct experiments, a simulation environment has
been developed in Matlab

r©. There are two levels of the code. The lower level consists
of a library containing routines to answer queries such as whether two points in a two
dimensional polygonal environment are visible to each other. The higher level utilizes
these routines and consists of two major portions. In the first, the vertices of the
visibility polygon are obtained by means of an O(n2) algorithm, where n is the number
of vertices of the polygonal environment. These are then sorted in counterclockwise
order to compute the visibility polygon. The second consists of the controller which
decides the direction and the step size of the observer motion at each time instant.
The main task of the controller is the calculation of the generalized gradient of the
visible area function which is a natural outcome of (2.1) and (2.3). Such a framework
gives the flexibility to easily implement other visibility based algorithms for single or
multiple observers in a polygonal environment. This can be done by extracting the
appropriate information using the low level functions and implementing the desired
controller.

Figures 5.2 and 5.4 illustrate the performance of the gradient algorithm in equa-
tion (4.2). Computational inaccuracies in the implementation of the algorithm to
calculate the visibility polygon have been noticed in some configurations; see the plot
of the evolution of visible area with time in Figure 5.2. See Figure 5.3 for the phase
portrait of the vector field XQ for the polygon in Figure 5.1. Simulation results for an
observer in a similar polygonal environment containing a hole is shown in Figure 5.5.
Our experiments suggest that the observer reaches a local maximum of the visible
area in finite time, however this can be shown not to be true in general.

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

Fig. 5.1. Example of visible area function over a typical nonconvex polygon.

6. Conclusions. This paper introduces a gradient-based algorithm to optimally
locate a mobile observer in a nonconvex environment. We have presented nonsmooth
analysis and control design results. The simulation results illustrate that, in the
presence of noise, the observer reaches a local maximum of the visible area. In an
“highly nonconvex” environment, a single observer may not be able to see a large
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Fig. 5.2. Simulation results of the gradient algorithm for the nonconvex polygon depicted in Fig-
ure 5.1. The observer arrives, in finite time, at a local maximum. Note here that the observer visits
a reflex vertex at some point in its trajectory but comes out of it due to computational inaccuracies
because it is not a local maximum.

fraction of the environment. In such a case, a team of observers can be deployed to
achieve the same task. We therefore plan to investigate this same visibility objective
for teams of observers. Other directions of future research include practical robotic
implementation issues as well as other combined mobility and visibility problems.
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Appendix A. Nonsmooth analysis and discontinuous vector fields.

In this appendix we review some basic facts and standard notations from nons-
mooth analysis [4].

Definition A.1. A function f : RN → R is said to be locally Lipschitz near
x ∈ RN if there exist positive constants Lx and ε such that |f(y)−f(y′)| ≤ Lx‖y−y′‖
for all y, y′ ∈ BN (x, ε).

Note that continuously differentiable functions at x are locally Lipschitz near x.
The usual right directional derivative and the generalized directional derivative of f
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Fig. 5.4. Simulation results of the gradient algorithm for the nonconvex polygon in Figure 1.1.
The observer arrives, in finite time, at a local maximum.

at x in the direction of v ∈ RN are defined, respectively, as

f ′(x; v) = lim
t→0+

f(x + tv) − f(x)

t
, fo(x; v) = lim sup

y→x
t→0+

f(y + tv) − f(y)

t
.

The limit in the definition of f ′(x; v) does not always exist, whereas the limit in
fo(x; v) is always well-defined.

Definition A.2. A function f : RN → R is said to be regular at x ∈ RN if for
all v ∈ RN , f ′(x; v) exists and fo(x; v) = f ′(x; v).

Again, a continuously differentiable function at x is regular at x. Also, a locally
Lipschitz function at x which is convex is also regular (cf. Proposition 2.3.6 in [4]).

From Rademacher’s Theorem [4], we know that locally Lipschitz functions are
continuously differentiable almost everywhere (in the sense of Lebesgue measure). If
Ωf denotes the set of points in RN at which f fails to be differentiable, and S denotes
any other set of measure zero, the generalized gradient of f is defined by

∂f(x) = co

{
lim

i→+∞
df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
.

Note that this definition coincides with df(x) if f is continuously differentiable at
x. The generalized gradient and the generalized directional derivative (cf. Proposi-
tion 2.1.2 in [4]) are related by f o(x; v) = max {ζ · v | ζ ∈ ∂f(x)}, for each v ∈ RN .
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Fig. 5.5. Simulation results of the gradient algorithm for an observer in a nonconvex environ-
ment with a hole. The observer arrives, in finite time, at a reflex vertex.

A point x ∈ RN which verifies that 0 ∈ ∂f(x) is called a critical point of f . The
extrema of Lipschitz functions are characterized by the following result.

Proposition A.3. Let f be a locally Lipschitz function at x ∈ RN . If f attains
a local minimum or maximum at x, then 0 ∈ ∂f(x), i.e., x is a critical point.

Let Ln : 2R
N → 2R

N

be the set-valued map that associates to each subset S
of RN the set of its least-norm elements Ln(S). For a locally Lipschitz function
f , we consider the generalized gradient vector field Ln(∂f) : RN → RN given by
x 7→ Ln(∂f)(x) = Ln(∂f(x)).

Theorem A.4. Let f be a locally Lipschitz function at x. Assume that 0 6∈ ∂f(x).
Then, there exists T > 0 such that f(x − t Ln(∂f)(x)) ≤ f(x) − t

2‖Ln(∂f)(x)‖2,
0 < t < T . The vector −Ln(∂f)(x) is called a direction of descent.

For differential equations with discontinuous right-hand sides we understand the

solutions in terms of differential inclusions following [8]. Let F : RN → 2R
N

be a
set-valued map. Consider the differential inclusion

ẋ ∈ F (x) . (A.1)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely
continuous function x : [t0, t1] → RN such that ẋ(t) ∈ F (x(t)) for almost all t ∈
[t0, t1]. Given x0 ∈ RN , the existence of at least a solution with initial condition x0

is guaranteed by the following lemma.
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Lemma A.5. Let the map F be upper semicontinuous with nonempty, compact
and convex values. Then, given x0 ∈ RN , there exists at least a solution of (A.1) with
initial condition x0.

Now, consider the differential equation

ẋ(t) = X(x(t)) , (A.2)

where X : RN → RN is measurable and essentially locally bounded. We understand
the solution of this equation in the Filippov sense. For each x ∈ RN , consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(BN (x, δ) \ S)} ,

where µ denotes the usual Lebesgue measure in RN . Alternatively, one can show [13]
that there exists a set SX of measure zero such that

K[X](x) = co

{
lim

i→+∞
X(xi) | xi → x , xi 6∈ S ∪ SX

}
,

where S is any set of measure zero. A Filippov solution of (A.2) on an interval
[t0, t1] ⊂ R is defined as a solution of the differential inclusion

ẋ ∈ K[X](x) . (A.3)

Since the set-valued map K[X] : RN → 2R
N

is upper semicontinuous with nonempty,
compact, convex values and locally bounded (cf. [8]), the existence of Filippov solu-
tions of (A.2) is guaranteed by Lemma A.5. A set M is weakly invariant (respectively
strongly invariant) for (A.2) if for each x0 ∈ M , M contains a maximal solution (re-
spectively all maximal solutions) of (A.2).
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